Adaptive matrix metrics for molecular descriptor assessment in QSPR classification

نویسندگان

  • Axel J. Soto
  • Marc Strickert
  • Gustavo E. Vazquez
چکیده

QSPR methods represent a useful approach in the drug discovery process, since they allow predicting in advance biological or physicochemical properties of a candidate drug. For this goal, it is necessary that the QSPR method be as accurate as possible to provide reliable predictions. Moreover, the selection of the molecular descriptors is an important task to create QSPR prediction models of low complexity which, at the same time, provide accurate predictions. In this work, a matrix-based method [1] is used to transform the original data space of chemical compounds into an alternative space where compounds with different target properties can be better separated. For using this approach, QSPR is considered as a classification problem. The advantage of using adaptive matrix metrics is twofold: it can be used to identify important molecular descriptors and at the same time it allows improving the classification accuracy. A recently proposed method making use of this concept [2] is extended to multi-class data. The new method is related to linear discriminant analysis and shows better results at yet higher computational costs. An application for relating chemical descriptors to hydrophobicity property [3] shows promising results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on quantitative structure-properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution

Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown pro...

متن کامل

A Novel Molecular Descriptor Derived from Weighted Line Graph

The Bertz indices, derived by counting the number of connecting edges of line graphs of a molecule were used in deriving the QSPR models for the physicochemical properties of alkanes. The inability of these indices to identify the hetero centre in a chemical compound restricted their applications to hydrocarbons only. In the present work, a novel molecular descriptor has been derived from the w...

متن کامل

A novel topological descriptor based on the expanded wiener index: Applications to QSPR/QSAR studies

In this paper, a novel topological index, named M-index, is introduced based on expanded form of the Wiener matrix. For constructing this index the atomic characteristics and the interaction of the vertices in a molecule are taken into account. The usefulness of the M-index is demonstrated by several QSPR/QSAR models for different physico-chemical properties and biological activities of a large...

متن کامل

Quantitative relationships for the prediction of the vapor pressure of some hydrocarbons from the van der Waals molecular surface

A quantitative structure–property relationship (QSPR) modeling of vapor pressure at 298.15 K, expressed as log (VP / Pa) was performed for a series of 84 hydrocarbons (63 alkanes and 21 cycloalkanes) using the van der Waals (vdW) surface area, SW / Å, calculated by the Monte Carlo method, as the molecular descriptor. The QSPR model developed from the subset of 63 alkanes (C1–C16), deemed as the...

متن کامل

Insubria QSPR PaDEL-Descriptor model for Vapor Pressure prediction of Polybrominated Diphenyl Ethers

Insubria QSPR PaDEL-Descriptor model for Vapor Pressure prediction of Polybrominated Diphenyl Ethers. 1.2.Other related models: E. Papa, S. Kovarich, P. Gramatica, 2009, Validation and Inspection of the Applicability Domain of QSPR Models for Physicochemical Properties of Polybrominated Diphenyl Ethers, QSAR & Comb.Sci. 28, 790-796. [9] 1.3.Software coding the model: [1]PaDEL-Descriptor 2.18 A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010